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Abstract – 
State-of-the-art building energy systems exhibit a 

high technical complexity. In the commissioning 
phase, technical building elements (TBE) are put into 
operation trade-by-trade and as linked complete 
systems. Besides the correct wiring on component 
level, instantiating the building automation and 
detecting errors is a cumbersome process in practice. 
The paper addresses a novel interconnected toolchain 
to support commissioning energy systems through 
digital processes in combination with energy system 
related digital BIM twins– the “energyTWIN”. This 
energyTWIN digitizes and automates the process 
chain in the commissioning of TBE and building 
automation with its highly complex interrelationships 
in constant exchange between reality and the BIM 
model (digital twin) as completely as possible.  

By increasing energy efficiency with the novel 
processes of energyTWIN, a contribution to the 
worldwide goal of reducing energy consumption can 
be achieved. 
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1 Introduction 
Nowadays, TBE are highly complex and 

interconnected systems. After dimensioning the 
hydraulic system and planning as Piping and 
Instrumentation Diagram (P&ID), TBE are today 
planned as 3D model with semantic (manufacturer) data 
using Building Information Modeling (BIM). In practice, 
building automation with its functional descriptions is 

handled separately. Both domains are typically not linked 
and uniform data labels of TBE are defined often 
separately without using the (naturally existing) 
classification system of BIM. So, the TBE functions 
correctly and according to its control strategy during the 
operational phase, the commissioning must correspond to 
the planned configuration, or, the TBE control system 
must be customized to the actual built situation. 
Therefore, in the energyTWIN project, modern methods 
for high-resolution as-built data capturing (reality 
capturing) are being developed and refined with the aid 
of Artificial Intelligence (AI)-based data filtering and 
feature extraction for the automated recognition and 
classification of components and their topological, 
functional and informational interrelationships. 

Crucial for automated workflows are uniform, 
generic (manufacturer-neutral) Reference Designation 
Systems (RDS) for the identification of TBE components 
(section 2). For data capturing of the actual installed TBE, 
efficient methods based on photogrammetry, laser 
scanning, infrared measurement technology, etc. will be 
developed and refined as described in section 3. This also 
includes methods for indoor positioning (pose tracking) 
and georeferencing of the captured data. Georeferencing 
is needed for comparisons to the as-planned BIM model 
and will be used in Virtual and Augmented Reality 
(VR/AR) applications of section 4. A comparison 
between the planned and the actual as-built situation will 
be realized using AI-based methods for automated 
recognition and classification of components and their 
topological relationships (section 5). A cloud-based 
system will connect all acquired relevant data on field 
level. Fault detection and diagnosis increases system and 
supply reliability (section 6). Finally, all developments 
will be prototyped and evaluated (section 7). Several, 
partly AI-supported methods will be fused to derive a 
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BIM model that reflects the actual situation (as-built) for 
planning and operational processes including aspects of 
time and costs (5D BIM in the phase of building life cycle 
following the commissioning of the TBE).  

The energyTWIN, for the first time, employs AI-
based approaches to combine image- and laser-based 
geometric and semantic data of building and system 
components with simultaneously captured data on field 
level. Furthermore, the modern technologies VR/AR are 
used for georeferenced and interactive visualizations as 
well as updating the BIM-based digital twins of the TBE. 
Finally, the RDS ensures the unique identification of 
objects during the various processes and data exchanges. 

2 Reference Designation Systems 
RDS are used for the unique identification of objects 

at different levels of granularity. Identifiers can be 
implemented as Global Unique Identifier (GUID) by a 
combination of alphanumeric characters or by a 
hierarchical structuring of data according to certain 
aspects such as location-, function- and signal related 
structure. GUIDs are used by BIM software applications 
and in the Industry Foundation Classes (IFC) data model 
[1]. The IFC schema is a standardized data model that 
defines the identity, semantics, characteristics, attributes, 
and relationships of objects, abstract concepts, processes, 
and people in a logical form. RDS with a hierarchical 
structuring of data are used by humans to reference 
objects across different models and documents. The 
structuring and level of detail of these systems depends 
on project-specific conditions as well as use cases and 
can therefore not be defined globally [2]. However, the 
reference designation should be as short as possible and 
as detailed as necessary. Aspects such as readability, 
memorability and uniformity of the reference designation 
system must be considered. 

RDS map a "component-of" structure via hierarchical 
structuring according to various aspects. Frequently, a 
distinction is made between location, functional, and 
product-related aspects [3]. The location-related aspect 
describes the installation site or the installation location 
of an object. Entities of the local structure can be, among 
others, site, building, storey, area, room, or segment as 
well as outdoor areas. The product-related aspect defines 

the composition of the object. It shows the division of an 
object into individual parts. Entities of the product-
related structure are defined, among others, in 
standardized classification schemes such as Table 02 of 
DIN EN IEC 81346 - 2 [4] or Table 03 of VDI 3814 - 4.1 
[5]. The functional-related aspect describes the 
respective function or task of a system and subdivides it 
hierarchically. Entities of the function-related structure 
are, among others, functional systems, technical systems, 
and components. These aspects can be used isolated from 
each other or interrelated to reference objects. 
Independently of this, the marking in the individual 
levels of the aspects takes place via a defined sequence 
of alphanumeric characters [3]. 

As part of a literature review, 50 RDS were 
considered, originating from the private (building 
automation, utilities), public (cities, state offices, federal 
offices) and scientific (universities, university hospitals) 
sectors. In addition, common standards were considered. 
Especially the reference designation systems of DIN EN 
IEC 81346 [2], VDI 3814 [5] and the Buildings Unified 
Data Point naming schema for Operation Management 
(BUDO) [6] were evaluated positively. Based on these 
findings and aligned with the concepts of DIN EN IEC 
81346, a possible structure for a reference designation 
system is shown in Figure 1. 

To implement a RDS into the planning process, the 
systems must be streamlined with existing digital data 
models. The digital model, also known as the BIM model, 
is the central instrument and is considered the "single 
source of truth". One option for structuring and 
exchanging the information is the open IFC standard. 
Depending on the aspect under consideration, structures 
for mapping these already exist in the IFC data model. 
There are five classes (IfcSite, IfcBuilding, IfcBuilding 
Storey, IfcRoom and IfcZone) describing the location-
related aspect, one class with multiple types (IfcSystem) 
to describe the function-related aspect as well as multiple 
classes and subtypes to describe the product-related 
aspect. For the description of the signal-related aspects, 
no classes are currently available in IFC. Therefore, the 
structures can only be considered as attributes on 
elements. To map these, the IFC data model would have 
to be extended to include classes such as IfcSignal and 
the relationship IfcRelConnectsSignalToElement. 

Figure 1: Possible structure of the RDS (A = alphabetic character, N = numeric character) 
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Corresponding types of IfcSignal could be based on 
existing classifications in the BUDO schema. 

3 Efficient methods for reality capturing 
For digitizing and automating the process chain 

during the commissioning of TBE, capturing geometric 
and semantic data of the realised state is essential. This 
requires a suitable capturing system, favourably with 
various sensors and interfaces. State-of-the-art is to use 
laser scanning and photogrammetry [7]. Often laser 
scanners are coupled with cameras to create coloured 
point clouds that represent the environment very 
realistically. Roughly, laser scanning can be categorized 
into two types: Terrestrial Laser Scanning (TLS) and 
Mobile Laser Scanning (MLS). While in TLS the 
resulting points clouds typically have a higher accuracy 
in comparison to MLS, MLS is more flexible and time 
efficient. In the field of photogrammetry, combining 
images taken from different points of view into a 
common coordinate system by determining the mutual 
orientation by means of bundle block adjustment over 
identical (homologous) points, has long been the standard 
method [8].  

In the energyTWIN project, the goal is to create a 
flexible and easy to use system that is able to capture 
geometry, visual information, and additional properties 
of TBE, such as thermal data. The geometry contains 
information about size and shape of an object, an image 
contains information such as colour, and thermal data 
insight into the functionality of an object. A fusion of 
multiple data promises an improved and holistic 
classification of objects, since each part of information 
provides further indications about an object and reduces 
the number of object possibilities.  

A potentially easier to use and more flexible solution 
than a stationary TLS or a conventional MLS, is the 
Microsoft HoloLens 2 (MHL2). The MHL2 is a mobile 
mixed reality (MR) head-mounted system. Its built-in 
sensors already include a depth and a colour (RGB) 
camera to create coloured point clouds. Since the MHL2 
is head-worn, it has the same advantages as MLS in terms 
of flexibility and capturing speeds, compared to TLS. 
Furthermore, with its fully-fledged MR capabilities, it is 
a combined data capturing and MR system and enables 
us to realize the project goals described in section 3 and 
4. In a detailed evaluation we found that the MHL2 
achieves a sufficient accuracy of 2-5 cm, which is 
suitable for the project goals. Additionally, we are 
extending the system with external sensors, such as a 
thermal camera. We attached a FLIR ADK thermal 
camera directly to the MHL2 with a 3D-printed mount 
(Figure 2) and calibrated the system. To incorporate the 
thermal data into point clouds, we developed a mapping 
method, which enables generating point clouds coloured 

with RGB and thermal camera data. 
A prerequisite for fusing data of different sensors is 

that the data must be transformed into a uniform 
coordinate system (co-registration). For example, 
separate point clouds must be registered to each other or 
thermal images must be projected onto the point clouds. 

 

Figure 2. System setup consisting of the MHL2 in 
combination with the FLIR ADK thermal camera  

The registration of point clouds can be achieved using 
methods such as RANSAC [9] or Iterative Closest Point 
(ICP) [10]. These techniques are also used for MLS to 
register point clouds in real-time. For example, using 
visual odometry [11] or plane-based methods as shown 
by Wujanz et al. [12]. Another example of fusing image 
data and other sensor data is shown in Effkemann et al. 
[13]. Furthermore, many manufacturers already offer 
software for the registration process, for example Riegl 
RiSCAN PRO. Initial methods and results to register 
thermal images with a model of the outer shell of a 
building via homogeneous points and project the images 
onto the facades are shown by [14]. Many methods, 
however, require lengthy manual steps by the user. Next 
to constructing a reality capturing system, an important 
goal of the energyTWIN project therefore is the 
development of an automated registration process. 

Key-information for registering point clouds, 
georeferencing data or also for visualizing data in VR and 
AR, are the viewing direction (orientation) and location 
(position), referred to as pose, of the user or more 
specifically the device. Any movement of the user must 
be tracked in real-time, so the pose stays up to date. This 
is referred pose tracking. There are two basic types of 
pose tracking: outside-in and inside-out. In outside-in 
pose tracking, an exterior device, for example attached to 
a wall, observes the device carried by the user to estimate 
its pose. In inside-out pose tracking, the tracking device 
is carried by the user and it observes its surroundings for 
pose estimation. Outdoors, typically, outside-in methods, 
e.g. satellite-based localization systems (GNSS), are used. 
Since GNSS are usually not applicable in covered areas, 
methods based on the radio technologies Ultra-Wideband 
(UWB), Bluetooth or WLAN, as well as on infrared or 
ultrasound, are required for indoor applications [15]. 
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However, these systems need a complex installation. 
Therefore, the project focuses on inside-out methods, 
specifically camera-based or laser-based methods, to 
offer flexibility. In contrast to outside-in, inside-out 
methods do not require external infrastructure. 

A pose requires a reference system, local or global. In 
VR, typically a local coordinate system is used for the 
virtual world, oriented during the setup process of the VR 
equipment. For example, the front facing direction is set, 
so that the user always starts relative to it. In AR, also 
often local coordinate systems are used, for instance 
initialized when the AR system is started. Objects then 
appear relative to the starting pose of the user. Since AR 
is much more linked to the physical world than VR, it is 
beneficial to apply a global coordinate system like World 
Geodetic System 1984 (WGS 84) or another existing 
real-world coordinate system, such as a building 
coordinate system. A common virtual and physical 
coordinate system, such as a building coordinate system, 
enables attaching virtual information to physical 
elements or augmenting these as shown in [16, 17]. 

Therefore, we will realize a method to transform the 
MHL2 from its local coordinate system into a building 
coordinate system and a method to accurately track the 
pose of the MHL2 in the building coordinate system. For 
this, we will use the georeferenced BIM-based 3D 
planning model to register the MHL2 to the building. 
Building parts of the virtual model can be used as a 
reference to find the pose of the user in the physical 
building and then calculate the transformation from the 
local to the building coordinate system. Afterwards, we 
will track the user’s pose relative to the initialization pose 
in the building coordinate system. A promising method 
for this is Simultaneous Localization and Mapping 
(SLAM) [18]. SLAM uses pose information to generate 
a local map (3D point cloud) of the environment. The 
map in turn is employed for pose estimation. Using 
bundle block adjustment, the relative camera poses are 
optimized based on the 3D point cloud to obtain a highly 
accurate local trajectory. For a globally consistent 
trajectory, a loop closure method is applied. Loop closure 
refers to returning to a previously visited location and 
incorporating past pose information into current 
estimates. The most common types of SLAM are camera-
based visual SLAM (V-SLAM) and laser-based light 
detection and ranging (LiDAR)-SLAM. While V-SLAM 
uses corresponding salient points in sequences of 
photographs (feature points) to estimate the motion of the 
physical camera, LiDAR-SLAM uses sequences of 3D 
point clouds. While V-SLAM has more information 
available than LiDAR-SLAM due to the use of cameras, 
it is more susceptible to different lighting conditions. 
This must be taken into account, especially for indoor 
pose tracking in dark rooms. 

4 VR/AR for semantic data enrichment 
In the energyTWIN project, VR and AR are utilized 

to visualize a variety of data, to support the user in 
visually comparing the planned (as-planned/as-designed) 
and the real-world (as-built) situation, in order to correct 
the as-planned model with the detected deviations. 

VR and AR systems differ by the amount of digital 
and real-world content the user is presented with. In VR 
systems, the user can only see digital content and his real-
world location becomes less relevant. In room-scale VR, 
as often possible with modern VR systems, the user is 
able to move around in a virtual environment and interact 
with it by moving in his physical environment with hand-
held controllers or other devices. In an AR system, a large 
part of the visual input consists of the real world which 
the user is surrounded by. The project goal is to develop 
a system, which allows the user to walk through the 
building to commission the different parts of the TBE. 
Therefore, a stationary AR system is not suitable, but a 
mobile one including georeferencing is needed. For a 
mobile georeferenced AR system, three subtasks need to 
be solved: (1) the data needs to be prepared and 
visualized in real-time, (2) the physical world needs to be 
observable and (3) methods need to be implemented to 
combine both worlds.  

For energyTWIN, a two-pronged approach has been 
chosen. In a VR system, the user will be able to interact 
off-site with purely digital content and use combinations 
of data from the as-planned model and the captured point 
cloud data, which represents the as-built situation. In AR, 
the user will be able to overlay selected data in the real-
world on-site and interact with it, for example, the as-
planned model, to visually compare it to the actual built 
situation. As a development framework, we are using 
Unreal Engine (UE). While UE primarily is a framework 
for developing computer games, recent additions like 
interfaces for IFC and point clouds enable the software 
for business and industry applications. In our VR solution, 
the user will have two basic datasets available that form 
the digital world surrounding him: On the one side, the 
as-planned BIM model in the form of geometry 
components from IFC and on the other side, point clouds 
that represent the real-world situation. The user will be 
able to move around by physically moving and by so 
called teleporting. For teleportation, the user aims the 
controller at a point in the virtual space and by pressing a 
button, he is virtually transported to this location. IFC 
elements offer much more information than only the 
geometry. The user will be able to access this information 
via a User Interface (UI) directly in VR (Figure 3).  

The UI consists of a virtual panel attached to the left 
and a laser pointer to the right virtual hand. The 
developed RDS (section 1) is used to filter by criteria 
such as function type of the system. 
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Figure 3. UI in VR 

When a deviation between the as-planned and as-built 
situation is identified, the user can place an issue, using a 
ticket system. Selected from a predefined list, comments 
can be attached to individual components of the IFC 
model. The issues will be exportable using the IFC-based 
standardized BIM Collaboration Format (BCF), to allow 
interoperability between the subsystems of energyTWIN.  

In the AR, the user will be able to visualize the 
planned model (IFC model) on-site and interact with it 
with the MHL2 and its gesture recognition system 
(Figure 4). For possible performance issues with the 
MHL2, a solution involving pixel streaming technologies 
is being tested. With it, heavy processing tasks are 
outsourced to an external computer or cluster and only 
the prerendered images are sent to the MHL2 to be 
displayed. With this AR system, the user will be able to 
capture data only visible on site and will be guided 
through processes such as TBE installation or 
maintenance. 

 
Figure 4. User interaction in AR 

5 AI based methods for element 
recognition and classification 

In the first step, we focus on developing methods for 
the automatic filtering and extraction of features to 
recognize and classify TBE and its topological, 
functional and informational relationships from image-, 
laser- and infrared-based data, to obtain the as-built BIM. 
In a second step, the extracted TBE should be 
automatically compared with the as-planned BIM in 

order to model the objects geometrically and 
semantically. In addition, rule-based methods of clash 
detection are also integrated within this operation to 
detect differences between the models. This process 
allows the as-planned BIM to be upgraded to an as-built 
BIM. A challenge is handling the large data amounts and 
their complexity, since these are hardly manageable 
manually, so that automated methods are indispensable. 
Therefore, we are investigating which approach suits the 
project´s purposes best. 

Today, AI enables analysing large and possibly 
unstructured data sets (big data). Two possible options 
are classical Machine Learning (ML) methods or more 
recently Deep Learning (DL) using artificial neural 
networks (ANN). AI-based methods have already been 
successfully applied to building element reconstruction, 
for example of indoor scenes [19]. In this context, the 
neural networks PointNet [20] and VoxelNet [21] are 
particularly noteworthy, which differ in the way 
geometric features are processed and classified. However, 
modified and refined models such as Voxel-FPN [22] 
have also proven to be effective in detecting objects in 
outdoor and indoor environments. Some models such as 
the MVX-Net [23] also fall back on data from different 
sensors and merge the separate classification results to 
achieve a higher level of accuracy. Another possibility 
for system topology recognition is the classification of 
building technology time series, as described in their 
basic functioning in [24]. While DL can handle large 
amounts of data, its disadvantage is that it also requires 
large amounts of training data and significant training 
time. Furthermore, numerous aspects such as the 
selection of suitable parameters and training features 
must be considered for preventing problems such as 
overfitting of the models. 

To support the AI, we will integrate the as-planned 
BIM into the process. This will allow us to apply existing 
information to the algorithms (knowledge-based). Next 
to the knowledge-based solution, we will also realize a 
geometry-based method without prior knowledge, to 
analyse the data based on geometrical properties. As a 
third option, we will implement a DL-based solution. 
Finally, all solutions will be compared, and the most 
suitable solution for the task will be identified. 

The knowledge-based approach is characterized by 
the fact that the as-planned BIM acts as a reference in the 
analysis of the captured point cloud data. A prerequisite 
is a point cloud sampled from the as-planned BIM [25]. 
To generate such an as-planned point cloud, a ray-casting 
algorithm will be utilized. Furthermore, the captured 
point cloud will be segmented object-wise by deriving a 
bounding box from the corresponding objects from the 
as-planned BIM and transferring it to the as-built point 
cloud to cut out an object-specific point cloud. Therefore, 
a registration of the as-planned BIM and the captured 
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point cloud must be realized first, so that both are in a 
common spatial coordinate system. Following this 
process, certain object data can be transferred directly 
from the as-planned to the as-built BIM model. To 
investigate the relative position of the objects, an 
approach of a two-stage co-registration with coarse and 
fine positioning will be investigated using known 
techniques of geometric hashing [26], RANSAC [27] and 
(modified) iterative closest point (ICP) algorithms [28-
30]. On the other hand, the method presented in [31] for 
the as-built modelling of cylindrical objects using a 
Hough Transformation will be investigated on its 
application potential for the described project goal. 

For the geometry-based approaches, the detection of 
corners and edges via the investigation of local point 
densities and neighbourhood relationships [32] or the 
skeletonization of object representations in the as-built 
point cloud [33] will be analysed. 

In terms of a DL-based approach, existing methods 
for point cloud semantic and instance segmentation [34-
36] will be evaluated, further customized and advanced 
to better deal with the particular challenges of TBE. 

6 Cloud-based system for data provision 
and failure diagnostics 

The central element of the energyTWIN system 
architecture is the content server, which stores the BIM 
model, initially in the planning state, in the form of 
geometric IFC data of the building and its TBE (Figure 
5). Each object of the TBE is uniquely described and 
locally identifiable via a link to its id in the RDS (see 
section 2). 

 
Figure 5. Concept of the cloud infrastructure 

The data provided by the project partners, such as 
topological data, point clouds from laser scanning 
systems, camera images in the RGB and infrared range, 
as well as continuous operating data from the field, are 
not directly stored on the content server, but are held in 
separate cloud-based systems, each with their own query 
interfaces. The content server queries these data sources 
as needed and makes the results available to the user in 
real time in the context of the BIM model and its RDS. 

For this purpose, the content server in turn provides an 
interface, so that clients, such as web-interfaces or 
smartphone apps, can be connected and all collected data 
is visualized, easily comparable and always available. 

In this way, the commissioning of the TBE is 
optimized. Deviations from the planning status, which 
result from the evaluation of scan and photo data, are 
documented via a ticket system connected to the content 
server, with the aim of correcting the as-planned model 
and, thus, creating a valid modified BIM model that 
corresponds to the actual conditions. 

In the finished model, the sensors located in the field, 
such as temperature or pressure sensors, are then 
displayed at the topologically correct location throughout 
the entire operating time of the building, and the 
operating data provided by the sensors can be easily 
queried at any time, which greatly facilitates both fault 
diagnostics and maintenance. Should maintenance and 
other tasks become necessary in the future, planning and 
preparations can be made by combining scans, 3D views 
and continuous field data with the digital twin, to 
significantly reduce the number of necessary on-site 
visits. 

7 Evaluation and Demonstration  
All the developed methods and the results are 

evaluated throughout this project. For this purpose, 
various demonstrators are being set up for testing the 
relevance of the developed methods in practice. A small-
scale demonstrator (Figure 6) was set up on-site, 
including several technical installations for a drinking 
water system.  

 
Figure 6. Point cloud (NavVis VLX) of the 
ViegaCUBE (Viega GmbH & Co. KG) 

This is used for all the partners to exploit synergies 
and to test the already linked work progress. The 
demonstrator was already put into operation and a first 
digital twin of it was created. To create the twin, the 
NavVis mobile mapping system VLX and the terrestrial 
laser scanner Riegl VZ400 were used as reference 
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systems, next to the MHL2. First evaluations show that 
an accuracy of 1-3 cm can be expected from the MHL2, 
therefore, on a level with dedicated MLS systems. 
Further, more detailed evaluations will follow later in the 
project. On the one hand, the digital twin is represented 
through a point cloud. On the other, the NavVis software 
offers a web-based viewer, with built-in panorama, point 
cloud views, and the possibility of creating points of 
interest. It is used by the project partners to collaborate 
on the digital twin. 

After testing the developed processes on a small-
scaled system and evaluating the techniques and methods, 
they will be evaluated based on their applicability and 
relevance and subsequently changed or improved. The 
next step is the preparation of a large-scale demonstrator 
for further testing and evaluating. Therefore, the 
associated project partner provides a new constructed 
office building in Koblenz, Germany. The evaluated 
methods in the demonstrators provide insights into the 
accuracy of the applied methodology of the overall 
project and can, when considered, improve the overall 
accuracy. 

8 Conclusions and Outlook 
Within this paper we presented first results of our 

research. Technologies like indoor positioning, VR/AR, 
and various sensors (laser scanning, infrared etc.) and 
mobile devices (MHL2) are combined for data capturing. 
AI based methods will be used for object element 
classification and comparison to the as-planned model as 
well as for detecting and analyzing topological and 
functional relationships in TBE. A cloud-based system 
provides and exchanges the data on-site. RDS are used 
for unique building and TBE element identification. Only 
the combination of all these technologies enables enough 
knowledge about deviations between the BIM-planned 
TBE and its actual commissioning, so that the as-planned 
BIM model can be updated to the actual, built situation, 
and subsequently used for optimization of TBE. This 
promises an improved commissioning for increasing 
energy efficiency in the building’s operation phase.  

Future research will focus on increasing the accuracy 
of the capturing system which also involves increasing 
the pose tracking accuracy. Further improvements will 
involve increasing the automation level, for example, the 
AI-based segmentation and classification of TBE, also 
for complex elements. 
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